Molecular Modelling Principles And Applications 2nd Edition

Understanding Molecular Simulation

Complex systems that bridge the traditional disciplines of physics, chemistry, biology, and materials science can be studied at an unprecedented level of detail using increasingly sophisticated theoretical methodology and high-speed computers. The aim of this book is to prepare burgeoning users and developers to become active participants in this exciting and rapidly advancing research area by uniting for the first time, in one monograph, the basic concepts of equilibrium and time-dependent statistical mechanics with the modern techniques used to solve the complex problems that arise in real-world applications. The book contains a detailed review of classical and quantum mechanics, in-depth discussions of the most commonly used ensembles simultaneously with modern computational techniques such as molecular dynamics and Monte Carlo, and important topics including free-energy calculations, linear-response theory, harmonic baths and the generalized Langevin equation, critical phenomena, and advanced conformational sampling methods. Burgeoning users and developers are thus provided firm grounding to become active participants in this exciting and rapidly advancing research area, while experienced practitioners will find the book to be a useful reference tool for the field.

Statistical Modeling and Machine Learning for Molecular Biology
Presenting a concise, basic introduction to modelling and computational chemistry this text includes relevant introductory material to ensure greater accessibility to the subject. Provides a comprehensive introduction to this evolving and developing field Focuses on MM, MC, and MD with an entire chapter devoted to QSAR and Discovery Chemistry. Includes many real chemical applications combined with worked problems and solutions provided in each chapter Ensures that up-to-date treatment of a variety of chemical modeling techniques are introduced.

Computational Tools for Chemical Biology

This reference describes the role of various intermolecular and interparticle forces in determining the properties of simple systems such as gases, liquids and solids, with a special focus on more complex colloidal, polymeric and biological systems. The book provides a thorough foundation in theories and concepts of intermolecular forces, allowing researchers and students to recognize which forces are important in any particular system, as well as how to control these forces. This third edition is expanded into three sections and contains five new chapters over the previous edition. · starts from the basics and builds up to more complex systems · covers all aspects of intermolecular and interparticle forces both at the fundamental and applied levels · multidisciplinary approach: bringing together and unifying phenomena from different fields · This new edition has an expanded Part III and new chapters on non-equilibrium (dynamic) interactions, and tribology (friction forces)

Molecular Modelling and Drug Design

This book provides a myriad of fresh ideas and energetic approaches to the newer aspects of everyday drug modelling. With contributions from some of the best young talents of today, Molecular Modelling and Drug Design encourages a break from old traditions and probes the unexplored avenues of the modelling tool. The contributors’ views act as a gauge to future trends in computer-aided drug design-an area that continues to expand and play an ever more significant role in drug discovery.

Molecular Simulation on Cement-Based Materials

This book presents tutorial overviews for many applications of variational methods to molecular modeling. Topics discussed include the Gibbs-Bogoliubov-Feynman variational principle, square-gradient models, classical density functional theories, self-consistent-field theories, phase-field methods, Ginzburg-Landau and Helfrich-type phenomenological models, dynamical density functional theory, and variational Monte Carlo methods. Illustrative examples are given to facilitate understanding of the basic concepts and quantitative prediction of the properties and rich behavior of diverse many-body systems ranging
from inhomogeneous fluids, electrolytes and ionic liquids in micropores, colloidal dispersions, liquid crystals, polymer blends, lipid membranes, microemulsions, magnetic materials and high-temperature superconductors. All chapters are written by leading experts in the field and illustrated with tutorial examples for their practical applications to specific subjects. With emphasis placed on physical understanding rather than on rigorous mathematical derivations, the content is accessible to graduate students and researchers in the broad areas of materials science and engineering, chemistry, chemical and biomolecular engineering, applied mathematics, condensed-matter physics, without specific training in theoretical physics or calculus of variations.

Molecular Modelling for Beginners

This book provides a broad, practical introduction to the major techniques employed in molecular modelling and computational chemistry. It leads the reader through the relevant chemical and physical principles to an in-depth understanding of the methods.

An Introduction to Molecular Modelling, from Theory to Application

Since the first attempts at structure-based drug design about four decades ago, molecular modelling techniques for drug design have developed enormously, along with the increasing computational power and structural and biological information of active compounds and potential target molecules. Nowadays, molecular modeling can be considered to be an integral component of the modern drug discovery and development toolbox. Nevertheless, there are still many methodological challenges to be overcome in the application of molecular modeling approaches to drug discovery. The eight original research and five review articles collected in this book provide a snapshot of the state-of-the-art of molecular modeling in drug design, illustrating recent advances and critically discussing important challenges. The topics covered include virtual screening and pharmacophore modelling, chemoinformatic applications of artificial intelligence and machine learning, molecular dynamics simulation and enhanced sampling to investigate contributions of molecular flexibility to drug–receptor interactions, the modeling of drug–receptor solvation, hydrogen bonding and polarization, and drug design against protein–protein interfaces and membrane protein receptors.

Molecular Modeling for the Design of Novel Performance Chemicals and Materials

A Unified Microscopic Approach to Analyzing Complex Processes in Molecular Motors Motor Proteins and Molecular Motors explores the mechanisms of cellular functioning associated with several specific enzymatic molecules called motor proteins. Motor proteins, also known as molecular motors, play important roles in living systems by supporting cellular transport and
force generation via the transformation of chemical energy into mechanical work. The book presents established results, theoretical methods, and experimental observations related to biological molecular motors. It uses fundamental physical-chemical concepts and methods to develop a systematic theoretical framework for understanding motor protein dynamics. The author introduces the main ideas using simple arguments that avoid heavy mathematical derivations in favor of more intuitive physical understanding. Although the book assumes some rudimentary knowledge of cell biology, calculus, and basic ideas from chemistry and physics, it gives explanations and derivations for most results. Accessible to students and researchers in a wide range of scientific fields, this book provides a unified molecular picture for analyzing motor proteins. It connects major experimental facts on molecular motors to principal theoretical concepts consistent with the fundamental laws of chemistry and physics.

Motor Proteins and Molecular Motors

An essential guide to biomolecular and bioanalytical techniques and their applications Biomolecular and Bioanalytical Techniques offers an introduction to, and a basic understanding of, a wide range of biophysical techniques. The text takes an interdisciplinary approach with contributions from a panel of distinguished experts. With a focus on research, the text comprehensively covers a broad selection of topics drawn from contemporary research in the fields of chemistry and biology. Each of the internationally reputed authors has contributed a single chapter on a specific technique. The chapters cover the specific technique’s background, theory, principles, technique, methodology, protocol and applications. The text explores the use of a variety of analytical tools to characterise biological samples. The contributors explain how to identify and quantify biochemically important molecules, including small molecules as well as biological macromolecules such as enzymes, antibodies, proteins, peptides and nucleic acids. This book is filled with essential knowledge and explores the skills needed to carry out the research and development roles in academic and industrial laboratories. A technique-focused book that bridges the gap between an introductory text and a book on advanced research methods Provides the necessary background and skills needed to advance the research methods Features a structured approach within each chapter Demonstrates an interdisciplinary approach that serves to develop independent thinking Written for students in chemistry, biological, medical, pharmaceutical, forensic and biophysical sciences, Biomolecular and Bioanalytical Techniques is an in-depth review of the most current biomolecular and bioanalytical techniques in the field.

Computational Chemistry and Molecular Modeling

A concise, basic introduction to modelling and computational chemistry which focuses on the essentials, including MM, MC, and MD, along with a chapter devoted to QSAR and Discovery Chemistry. Includes supporting website featuring background information, full colour illustrations, questions and answers tied into the text, Visual Basic packages and many realistic
examples with solutions Takes a hands-on approach, using state of the art software packages G03/W and/or Hyperchem, Gaussian .gjf files and sample outputs. Revised with changes in emphasis and presentation to appeal to the modern student.

Molecular Modelling

The observation and manipulation of individual molecules is one of the most exciting developments in modern molecular science. Single Molecule Science: Physical Principles and Models provides an introduction to the mathematical tools and physical theories needed to understand, explain, and model single-molecule observations. This book explains the physical principles underlying the major classes of single-molecule experiments such as fluorescence measurements, force-probe spectroscopy, and nanopore experiments. It provides the framework needed to understand single-molecule phenomena by introducing all the relevant mathematical and physical concepts, and then discussing various approaches to the problem of interpreting single-molecule data. The essential concepts used throughout this book are explained in the appendices and the text does not assume any background beyond undergraduate chemistry, physics, and calculus. Every effort has been made to keep the presentation self-contained and derive results starting from a limited set of fundamentals, such as several simple models of molecular dynamics and the laws of probability. The result is a book that develops essential concepts in a simple yet rigorous way and in a manner that is accessible to a broad audience.

Molecular Modeling Basics

"Provides a lot of reading pleasure and many new insights." -Journal of Molecular Structure "This is the most entertaining, stimulating and useful book which can be thoroughly recommended to anyone with an interest in computer simulation." -Contemporary Physics "A very useful introduction . . . more interesting to read than the often dry equation-based texts." -Journal of the American Chemical Society Written especially for the novice, Molecular Dynamics Simulation demonstrates how molecular dynamics simulations work and how to perform them, focusing on how to devise a model for specific molecules and then how to simulate their movements using a computer. This book provides a collection of methods that until now have been scattered through the literature of the last 25 years. It reviews elements of sampling theory and discusses how modern notions of chaos and nonlinear dynamics explain the workings of molecular dynamics. Stresses easy-to-use molecules * Provides sample calculations and figures * Includes four complete FORTRAN codes

Statistical Mechanics: Theory and Molecular Simulation

This book focuses on some of the most significant advances in enzyme engineering that have been achieved through
directed evolution and hybrid approaches. On the 25th anniversary of the discovery of directed evolution, this volume is a tribute to the pioneers of this thrilling research field, and at the same time provides a comprehensive overview of current research and the state of the art. Directed molecular evolution has become the most reliable and robust method to tailor enzymes, metabolic pathways or even whole microorganisms with improved traits. By mirroring the Darwinian algorithm of natural selection on a laboratory scale, new biomolecules of invaluable biotechnological interest can now be engineered in a manner that surpasses the boundaries of nature. The volume is divided into two sections, the first of which provides an update on recent successful cases of enzyme ensembles from different areas of the biotechnological spectrum, including tryptophan synthases, unspecific peroxygenases, phytases, therapeutic enzymes, stereoselective enzymes and CO2-fixing enzymes. This section also provides information on the directed evolution of whole cells. The second section of the book summarizes a variety of the most applicable methods for library creation, together with the future trends aimed at bringing together directed evolution and in silico/computational enzyme design and ancestral resurrection.

Modeling of Molecular Properties

Molecular modeling techniques have been widely used in drug discovery fields for rational drug design and compound screening. Now these techniques are used to model or mimic the behavior of molecules, and help us study formulation at the molecular level. Computational pharmaceutics enables us to understand the mechanism of drug delivery, and to develop new drug delivery systems. The book discusses the modeling of different drug delivery systems, including cyclodextrins, solid dispersions, polymorphism prediction, dendrimer-based delivery systems, surfactant-based micelle, polymeric drug delivery systems, liposome, protein/peptide formulations, non-viral gene delivery systems, drug-protein binding, silica nanoparticles, carbon nanotube-based drug delivery systems, diamond nanoparticles and layered double hydroxides (LDHs) drug delivery systems. Although there are a number of existing books about rational drug design with molecular modeling techniques, these techniques still look mysterious and daunting for pharmaceutical scientists. This book fills the gap between pharmaceutics and molecular modeling, and presents a systematic and overall introduction to computational pharmaceutics. It covers all introductory, advanced and specialist levels. It provides a totally different perspective to pharmaceutical scientists, and will greatly facilitate the development of pharmaceutics. It also helps computational chemists to look for the important questions in the drug delivery field. This book is included in the Advances in Pharmaceutical Technology book series.

Computational Pharmaceutics

Molecular processes in nature affect human health, the availability of resources and the Earth’s climate. Molecular modelling is a powerful and versatile toolbox that complements experimental data and provides insights where direct
observation is not currently possible. Molecular Modeling of Geochemical Reactions: An Introduction applies computational chemistry to geochemical problems. Chapters focus on geochemical applications in aqueous, petroleum, organic, environmental, bio- and isotope geochemistry, covering the fundamental theory, practical guidance on applying techniques, and extensive literature reviews in numerous geochemical sub-disciplines. Topics covered include: • Theory and Methods of Computational Chemistry • Force Field Application and Development • Computational Spectroscopy • Thermodynamics • Structure Determination • Geochemical Kinetics This book will be of interest to graduate students and researchers looking to understand geochemical processes on a molecular level. Novice practitioners of molecular modelling, experienced computational chemists, and experimentalists seeking to understand this field will all find information and knowledge of use in their research.

Molecular Modeling of Corrosion Processes

Written by experienced experts in molecular modeling, this book describes the basics to the extent that is necessary if one wants to be able to reliably judge the results from molecular modeling calculations. Its main objective is the description of the various pitfalls to be avoided. Without unnecessary overhead it leads the reader from simple calculations on small molecules to the modeling of proteins and other relevant biomolecules. A textbook for beginners as well as an invaluable reference for all those dealing with molecular modeling in their daily work!

Rapid Test

The gap between introductory level textbooks and highly specialized monographs is filled by this modern textbook. It provides in one comprehensive volume the in-depth theoretical background for molecular modeling and detailed descriptions of the applications in chemistry and related fields like drug design, molecular sciences, biomedical, polymer and materials engineering. Special chapters on basic mathematics and the use of respective software tools are included. Numerous numerical examples, exercises and explanatory illustrations as well as a web site with application tools (http://www.amrita.edu/cen/ccmm) support the students and lecturers.

Computational Chemistry and Molecular Modeling

Laszlo traces the spectacular rise and spread of citrus across the globe, from southeast Asia in 4000 BC to modern Spain and Portugal, whose explorers introduced the fruit to the Americas. This book explores the numerous roles that citrus has played in agriculture, horticulture, cooking, nutrition, religion, and art.
Fundamental Principles of Molecular Modeling

Rapid tests, also known as point-of-care tests, have been in use for decades in the clinical and medical area and have become increasingly popular as an efficient screening method for conducting on-site analysis thanks to their simplicity, speed, specificity and sensitivity. Nowadays, rapid tests are widely applied for clinical, drug, food, forensic and environmental analysis and fields of application are rapidly increasing together with advances in the technology. The growing interest in rapid tests and their expanding application in diverse fields, together with requirements of improved sensitivity, reliability, multiple detection capacity and robustness, are prompting innovation in the design of novel platforms, and in the exploitation of innovative detection strategies. The book covers advances in materials, technology and test design.

Intermolecular and Surface Forces

This book provides a detailed description of the techniques employed in molecular modeling and computational chemistry. The first part of the book covers the two major methods used to describe the interactions within a system (quantum mechanics and molecular mechanics). The second part then deals with techniques that use such energy models, including energy minimization, molecular dynamics, Monte Carlo simulations and conformational analysis. The author also discusses the use of more advanced modeling techniques such as the calculation of free energies and the simulation of chemical reactions. In addition he considers aspects of both chemoinformatics and bioinformatics and techniques that can be used to design new molecules with specific properties. Copyright © Libri GmbH. All rights reserved.

Traditional Chinese Medicines: Molecular Structures, Natural Sources and Applications

Computational chemistry has become extremely important in the last decade, being widely used in academic and industrial research. Yet there have been few books designed to teach the subject to nonspecialists. Computational Chemistry: Introduction to the Theory and Applications of Molecular and Quantum Mechanics is an invaluable tool for teaching and researchers alike. The book provides an overview of the field, explains the basic underlying theory at a meaningful level that is not beyond beginners, and it gives numerous comparisons of different methods with one another and with experiment. The following concepts are illustrated and their possibilities and limitations are given: - potential energy surfaces; - simple and extended Hückel methods; - ab initio, AM1 and related semiempirical methods; - density functional theory (DFT). Topics are placed in a historical context, adding interest to them and removing much of their apparently arbitrary aspect. The large number of references, to all significant topics mentioned, should make this book useful not only to undergraduates but also to graduate students and academic and industrial researchers.
Directed Enzyme Evolution: Advances and Applications

Essentials of Computational Chemistry provides a balanced introduction to this dynamic subject. Suitable for both experimentalists and theorists, a wide range of samples and applications are included drawn from all key areas. The book carefully leads the reader thorough the necessary equations providing information explanations and reasoning where necessary and firmly placing each equation in context.

The Art of Molecular Dynamics Simulation

This title was first published in 2003. In laboratories around the world the active principles in traditional herbal medicines are being isolated and characterized. A systematic effort at the Chinese Academy of Sciences is underway to identify the structure-activity relationships that result from the link between chemistry and medicine that is permitted by this data. This book, which provides the only systematic English-language description of the chemical structures and pharmacological effects of compounds active in traditional Chinese medicines (TCMs), is now in its second edition. The new edition provides English-language monographs on over 9000 chemicals isolated from nearly 4000 natural sources used in Chinese medicine and features the addition of in-depth bioactivity data for many of the compounds. Effects and indications of the medicines are included. Extensive indexing permits cross-referencing among English, Chinese and Latin names for natural medicinal sources, effects and indications, and the chemical components of the medicines. The second edition of Traditional Chinese Medicines includes 2300 new compounds, 2400 additional plant sources, more CAS Registry Numbers, and more pharmacological data. The structure of the book has been extensively reorganised to make cross referencing the data much simpler. This new edition is therefore a substantial improvement on the first edition of this important reference on the structural chemistry of traditional Chinese medicines.

Molecular Modelling

A brief introduction to the basic knowledge underlying modern molecular modelling

Computational Materials Science

The gap between introductory level textbooks and highly specialized monographs is filled by this modern textbook. It provides in one comprehensive volume the in-depth theoretical background for molecular modeling and detailed descriptions of the applications in chemistry and related fields like drug design, molecular sciences, biomedical, polymer and materials engineering. Special chapters on basic mathematics and the use of respective software tools are included.
Numerous numerical examples, exercises and explanatory illustrations as well as a web site with application tools (http://www.amrita.edu/cen/ccmm) support the students and lecturers.

Molecular Modeling of Geochemical Reactions

This book presents a number of studies on the molecular dynamics of cement-based materials. It introduces a practical molecular model of cement-hydrate, delineates the relationship between molecular structure and nanoscale properties, reveals the transport mechanism of cement-hydrate, and provides useful methods for material design. Based on the molecular model presented here, the book subsequently sheds light on nanotechnology applications in the design of construction and building materials. As such, it offers a valuable asset for researchers, scientists, and engineers in the field of construction and building materials.

Computational Chemistry

Molecular similarity has always been an important conceptual tool of chemists, yet systematic approaches to molecular similarity problems have only recently been recognized as a major contributor to our understanding of molecular properties. Advanced approaches to molecular similarity analysis have their foundation in quantum similarity measures, and are important direct or indirect contributors to some of the predictive theoretical, computational, and also experimental methods of modern chemistry. This volume provides a survey of the foundations and the contemporary mathematical and computational methodologies of molecular similarity approaches, where special emphasis is given to applications of similarity studies to a range of practical and industrially significant fields, such as pharmaceutical drug design. The authors of individual chapters are leading experts in various sub-fields of molecular similarity analysis and the related fundamental theoretical chemistry topics, as well as the relevant computational and experimental methodologies. Whereas in each chapter the emphasis is placed on a different area, nevertheless, the overall coverage and the wide scope of the book provides the reader with a general yet sufficiently detailed description that may serve as a good starting point for new studies and applications of molecular similarity approaches. The editors of this volume are grateful to the authors for their contributions, and hope that the readers will find this book a useful and motivating source of information in the rapidly growing field of molecular similarity analysis.

Single Molecule Science

This book details the necessary numerical methods, the theoretical background and foundations and the techniques involved in creating computer particle models, including linked-cell method, SPME-method, tree codes, and multipol...
technique. It illustrates modeling, discretization, algorithms and their parallel implementation with MPI on computer systems with distributed memory. The text offers step-by-step explanations of numerical simulation, providing illustrative code examples. With the description of the algorithms and the presentation of the results of various simulations from fields such as material science, nanotechnology, biochemistry and astrophysics, the reader of this book will learn how to write programs capable of running successful experiments for molecular dynamics.

Molecular Modeling in Drug Design

This textbook introduces modern techniques based on computer simulation to study materials science. It starts from first principles calculations enabling to calculate the physical and chemical properties by solving a many-body Schroedinger equation with Coulomb forces. For the exchange-correlation term, the local density approximation is usually applied. After the introduction of the first principles treatment, tight-binding and classical potential methods are briefly introduced to indicate how one can increase the number of atoms in the system. In the second half of the book, Monte Carlo simulation is discussed in detail. Problems and solutions are provided to facilitate understanding. Readers will gain sufficient knowledge to begin theoretical studies in modern materials research. This second edition includes a lot of recent theoretical techniques in materials research. With the computers power now available, it is possible to use these numerical techniques to study various physical and chemical properties of complex materials from first principles. The new edition also covers empirical methods, such as tight-binding and molecular dynamics.

Molecular Materials with Specific Interactions - Modeling and Design

Molecular Modeling

Design of new molecular materials is emerging as a new interdisciplinary research field. Corresponding reports are scattered in literature, and this book constitutes one of the first attempts to overview ongoing research efforts. It provides basic information, as well as the details of theory and examples of its application, to experimentalists and theoreticians interested in modeling molecular properties and putting into practice rational design of new materials.

Essentials of Computational Chemistry

First time paperback of successful physics monograph. Copyright © Libri GmbH. All rights reserved.
Molecular Dynamics Simulation

This multi-author contributed volume includes methodological advances and original applications to actual chemical or biochemical phenomena which were not possible before the increased sophistication of modern computers. The chapters contain detailed reviews of the developments of various computational techniques, used to study complex molecular systems such as molecular liquids and solutions (particularly aqueous solutions), liquid-gas, solid-gas interphase and biomacromolecular systems. Quantum modeling of complex molecular systems is a useful resource for graduate students and fledgling researchers and is also an excellent companion for research professionals engaged in computational chemistry, material science, nanotechnology, physics, drug design, and molecular biochemistry.

Genetic Algorithms in Molecular Modeling

Understanding Molecular Simulation: From Algorithms to Applications explains the physics behind the "recipes" of molecular simulation for materials science. Computer simulators are continuously confronted with questions concerning the choice of a particular technique for a given application. A wide variety of tools exist, so the choice of technique requires a good understanding of the basic principles. More importantly, such understanding may greatly improve the efficiency of a simulation program. The implementation of simulation methods is illustrated in pseudocodes and their practical use in the case studies used in the text. Since the first edition only five years ago, the simulation world has changed significantly -- current techniques have matured and new ones have appeared. This new edition deals with these new developments; in particular, there are sections on: · Transition path sampling and diffusive barrier crossing to simu late rare events · Dissipative particle dynamic as a course-grained simulation technique · Novel schemes to compute the long-ranged forces · Hamiltonian and non-Hamiltonian dynamics in the context constant-temperature and constant-pressure molecular dynamics simulations · Multiple-time step algorithms as an alternative for constraints · Defects in solids · The pruned-enriched Rosenbluth sampling, recoil-growth, and concerted rotations for complex molecules · Parallel tempering for glassy Hamiltonians Examples are included that highlight current applications and the codes of case studies are available on the World Wide Web. Several new examples have been added since the first edition to illustrate recent applications. Questions are included in this new edition. No prior knowledge of computer simulation is assumed.

Quantum Modeling of Complex Molecular Systems

Genetic Algorithms in Molecular Modeling is the first book available on the use of genetic algorithms in molecular design. This volume marks the beginning of an ew series of books, Principles in Qsar and Drug Design, which will be an indispensable reference for students and professionals involved in medicinal chemistry, pharmacology, (eco)toxicology, and
agrochemistry. Each comprehensive chapter is written by a distinguished researcher in the field. Through its up to the minute content, extensive bibliography, and essential information on software availability, this book leads the reader from the theoretical aspects to the practical applications. It enables the uninitiated reader to apply genetic algorithms for modeling the biological activities and properties of chemicals, and provides the trained scientist with the most up to date information on the topic. Extremely topical and timely. Sets the foundations for the development of computer-aided tools for solving numerous problems in QSAR and drug design. Written to be accessible without prior direct experience in genetic algorithms

Molecular Modelling for Beginners

Molecular modeling encompasses applied theoretical approaches and computational techniques to model structures and properties of molecular compounds and materials in order to predict and/or interpret their properties. The modeling covered in this book ranges from methods for small chemical to large biological molecules and materials. With its comprehensive coverage of important research fields in molecular and materials science, this is a must-have for all organic, inorganic and biochemists as well as materials scientists interested in applied theoretical and computational chemistry. The 28 chapters, written by an international group of experienced theoretically oriented chemists, are grouped into four parts: Theory and Concepts; Applications in Homogeneous Catalysis; Applications in Pharmaceutical and Biological Chemistry; and Applications in Main Group, Organic and Organometallic Chemistry. The various chapters include concept papers, tutorials, and research reports.

Numerical Simulation in Molecular Dynamics

Molecular modeling is becoming an increasingly important part of chemical research and education as computers become faster and programs become easier to use. The results, however, have not become easier to understand. Addressing the need for a "workshop-oriented" book, Molecular Modeling Basics provides the fundamental theory needed to understand

Variational Methods in Molecular Modeling

Molecular modeling (MM) tools offer significant benefits in the design of industrial chemical plants and material processing operations. While the role of MM in biological fields is well established, in most cases MM works as an accessory in novel products/materials development rather than a tool for direct innovation. As a result, MM engineers and

Citrus
Presents opportunities for making significant improvements in preventing harmful effects that can be caused by corrosion
Describes concepts of molecular modeling in the context of materials corrosion Includes recent examples of applications of molecular modeling to corrosion phenomena throughout the text Details how molecular modeling can give insights into the multitude of interconnected and complex processes that comprise the corrosion of metals Covered applications include diffusion and electron transfer at metal/electrolyte interfaces, Monte Carlo simulations of corrosion, corrosion inhibition, interrogating surface chemistry, and properties of passive films Presents current challenges and likely developments in this field for the future

Biomolecular and Bioanalytical Techniques

Molecular biologists are performing increasingly large and complicated experiments, but often have little background in data analysis. The book is devoted to teaching the statistical and computational techniques molecular biologists need to analyze their data. It explains the big-picture concepts in data analysis using a wide variety of real-world molecular biological examples such as eQTLs, ortholog identification, motif finding, inference of population structure, protein fold prediction and many more. The book takes a pragmatic approach, focusing on techniques that are based on elegant mathematics yet are the simplest to explain to scientists with little background in computers and statistics.